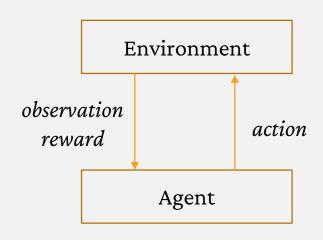
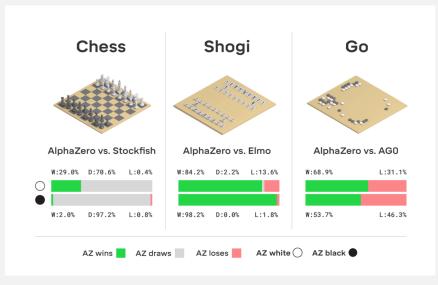
Learning Self-Correctable Policies and Value Functions from Demonstrations with Negative Sampling

Yuping Luo¹, Huazhe (Harry) Xu², Tengyu Ma³

¹Princeton University, ²UC Berkeley, ³Stanford University

Reinforcement Learning (RL)

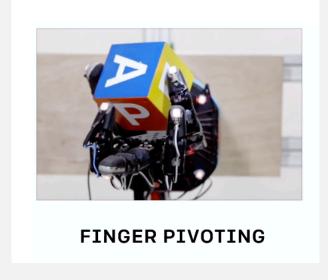




Games

From DeepMind

Robotics



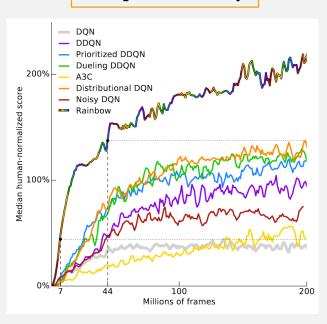
From OpenAI

Imitation Learning (IL)

- Given demonstrations from experts.
- Learn a policy from demonstrations from implicit reward function.
- Two settings: w/ or w/o environment interactions

Why Imitation Learning?

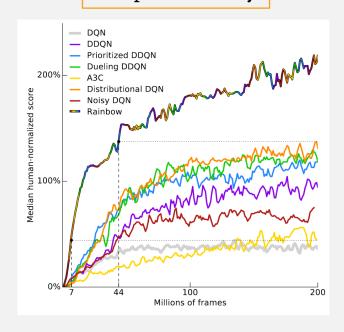
Sample efficiency



From Hessal et. al

Why Imitation Learning?

Sample efficiency



From Hessal et. al

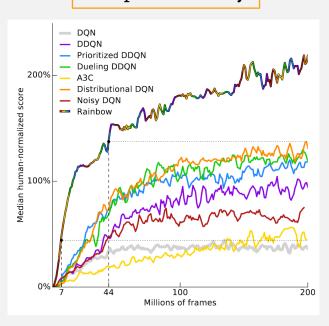
Use existing good demonstrations



From Google

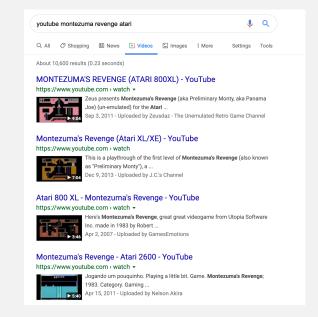
Why Imitation Learning?

Sample efficiency



From Hessal et. al

Use existing good demonstrations



From Google

Hard to design (good) reward function

$$r(b_z^{(1)}, s^P, s^{B1}, s^{B2}) = \begin{cases} 1 & \text{if } \operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases} \tag{3}$$

$$r(b_z^{(1)}, s^P, s^{B1}, s^{B2}) = \begin{cases} 1 & \text{if } \operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.25 & \text{if } -\operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases} \tag{4}$$

$$r(b_z^{(1)}, s^P, s^{B1}, s^{B2}) = \begin{cases} 1 & \text{if } \operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \wedge \operatorname{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.25 & \text{if } -\operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.25 & \text{if } -\operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \wedge \operatorname{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.125 & \text{if } -\operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \wedge \operatorname{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \wedge \operatorname{reach}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases}$$

$$r(b_z^{(1)}, s^P, s^{B1}, s^{B2}) = \begin{cases} 1 & \text{if } \operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.25 + 0.25r_{S2}(s^{B1}, s^P) & \text{if } -\operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \wedge \operatorname{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.125 & \text{if } -\operatorname{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \vee \operatorname{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \end{pmatrix} \wedge \operatorname{reach}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0 + 0.125r_{S1}(s^{B1}, s^P) & \text{otherwise} \end{cases} \tag{5}$$

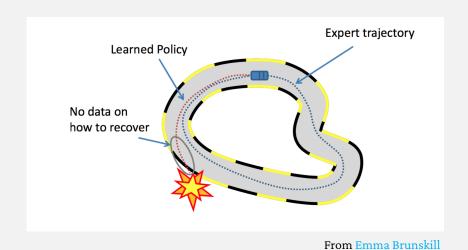
From Popov et. al

Basic Notations

- For simplicity, we assume a deterministic MDP with:
 - State space $\mathcal{S} = \mathbb{R}^d$, action space $\mathcal{A} = \mathbb{R}^k$
 - Dynamics model $M^*: S \times A \rightarrow S$
 - Reward function $r: S \times A \rightarrow \mathbb{R}$
 - Discount factor: $\gamma \in (0, 1]$
- (Value function) $V^{\pi}(s) = \mathbb{E}\left[\sum_{i=0} \gamma^i r_i | s_0 = s\right]$ is the value at state s
- Expert policy π_e
- Goal: find a policy $\pi = \arg \max_{\pi} \mathbb{E}_{s \sim D_{s_0}} [V^{\pi}(s)]$

Main Concern in Imitation Learning

Covariate shift: Different state distributions in demonstration and testing.



Grid world. Reward = -1 at each step and stops when reaching goal.

Color: learned value function. Black path: demonstration.

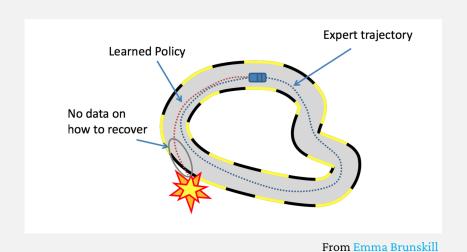
Yellow: Starting point.

Green: Goal.
Arrows: Policy.

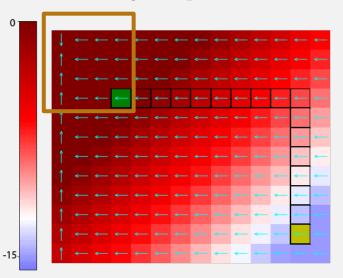
The learned value function via standard Bellman equation.

Main Concern in Imitation Learning

Covariate shift: Different state distributions in demonstration and testing.



Wrong extrapolation of V



Grid world. Reward = -1 at each step and stops when reaching goal.

Color: learned value function. Black path: demonstration.

Yellow: Starting point.

Green: Goal.
Arrows: Policy.

The learned value function via standard Bellman equation.

Challenges

Challenge 1. The value function V^{π_e} and Q^{π_e} are not unique outside of demonstration.

Challenge 2. Behavioral Cloning (BC) has cascading errors.

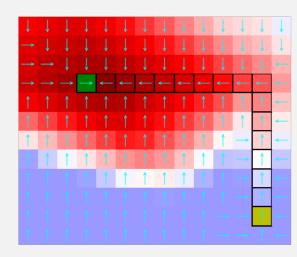
Challenge 3. Many RL algorithms use random initialized value function, which destroys a good initialized policy quickly.

- Non-demonstration states should have lower value than demonstration states.
- Penalize non-demonstration states.

Color: learned value function. Black path: demonstration.

Yellow: Starting point.

Green: Goal.
Arrows: Policy.

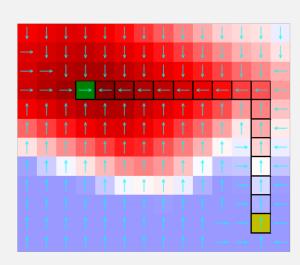


- Non-demonstration states should have lower value than demonstration states.
- Penalize non-demonstration states.

Color: learned value function. Black path: demonstration.

Yellow: Starting point.

Green: Goal.
Arrows: Policy.



Algorithm

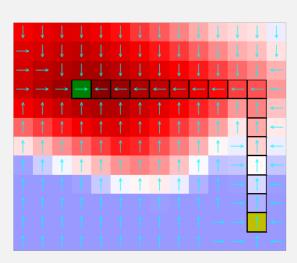
The Conservatively-Extrapolated Value Function

- Non-demonstration states should have lower value than demonstration states.
- Penalize non-demonstration states.

Color: learned value function. Black path: demonstration.

Yellow: Starting point.

Green: Goal.
Arrows: Policy.



Algorithm

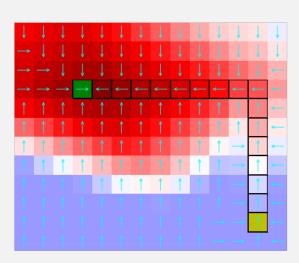
Learn a conservatively-extrapolated value function V

- Non-demonstration states should have lower value than demonstration states.
- Penalize non-demonstration states.

Color: learned value function. Black path: demonstration.

Yellow: Starting point.

Green: Goal.
Arrows: Policy.



Algorithm

Learn a conservatively-extrapolated value function V

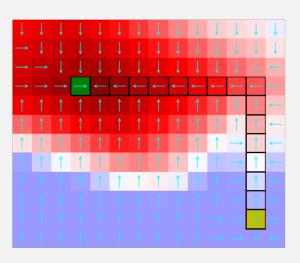
Learn the dynamics model M

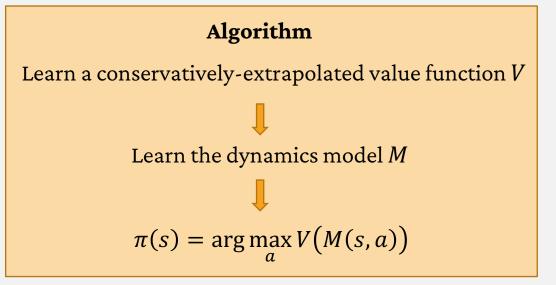
- Non-demonstration states should have lower value than demonstration states.
- Penalize non-demonstration states.

Color: learned value function. Black path: demonstration.

Yellow: Starting point.

Green: Goal.
Arrows: Policy.





Problem Setup

- Goal-reaching style: $r(s) = -\mathbb{I}[\||\log \text{goal}\|| \ge \varepsilon]$.
- For simplicity, $\gamma = 1$.
- Initial state distribution D_{S_0} has a low-dimensional bounded support
- $\mathcal{U}=$ the set of states which the expert policy π_e can visit w.p. > 0
 - **Assumption.** \mathcal{U} is a low-dimensional manifold.

lacktriangle BC can be correct in $\mathcal U$ but might not be correct outside of it.

 \blacksquare BC can be correct in $\mathcal U$ but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model? **Assumption 1.** (informally stated) BC policy and learned dynamics model is locally (around \mathcal{U}) correct.

 \blacksquare BC can be correct in $\mathcal U$ but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model? **Assumption 1.** (informally stated) BC policy and learned dynamics model is locally (around \mathcal{U}) correct.

Question 2. Does such a correction exist?

Assumption 2. (informally stated) There exists an action which makes a correction so that the resulting state is ε -close to \mathcal{U} .

 \blacksquare BC can be correct in $\mathcal U$ but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model? **Assumption 1.** (informally stated) BC policy and learned dynamics model is locally (around \mathcal{U}) correct.

Question 2. Does such a correction exist?

Assumption 2. (informally stated) There exists an action which makes a correction so that the resulting state is ε -close to U.

Question 3. Can the dynamics model/policy/value function change too fast? **Assumption 3.** (informally stated) BC policy, dynamics model, value functions and projection function to \mathcal{U} are Lipschitz.

Definition. A conservatively-extrapolated value function V satisfies

$$V(s) = V^{\pi_e}(s) \pm \delta_V,$$
 if $s \in \mathcal{U}$
$$V(s) = V^{\pi_e}(\Pi_{\mathcal{U}}(s)) - \lambda ||s - \Pi_{\mathcal{U}}(s)|| \pm \delta_V$$
 if $s \notin \mathcal{U}$

The following induced policy is self-correctable:

$$\pi(s) \triangleq \arg \max_{a:\|a-\pi_{bc}(s)\| \le \zeta} V(M(s,a))$$

Definition. A conservatively-extrapolated value function V satisfies

$$V(s) = V^{\pi_e}(s) \pm \delta_V,$$
 if $s \in \mathcal{U}$
$$V(s) = V^{\pi_e}(\Pi_{\mathcal{U}}(s)) - \lambda ||s - \Pi_{\mathcal{U}}(s)|| \pm \delta_V$$
 if $s \notin \mathcal{U}$

The following induced policy is self-correctable:

$$\pi(s) \triangleq \arg \max_{a:\|a-\pi_{bc}(s)\| \le \zeta} V(M(s,a))$$

Challenge 1:

The value function V^{π_e} (and Q^{π_e}) are not unique outside of U.

Not a problem for a conservatively-extrapolated value function!

Main Theorem. (informally stated) Under assumptions listed above, starting from $s_0 \in \mathcal{U}$ and executing a self-correctable policy π for $T_0 \leq T$ steps,

- 1. The resulting states s_1, \dots, s_{T_0} are all ε -close to the demonstrate states set \mathcal{U} .
- 2. If π_e improves V^{π_e} at every step, π also improves V^{π} .

Main Theorem. (informally stated) Under assumptions listed above, starting from $s_0 \in \mathcal{U}$ and executing a self-correctable policy π for $T_0 \leq T$ steps,

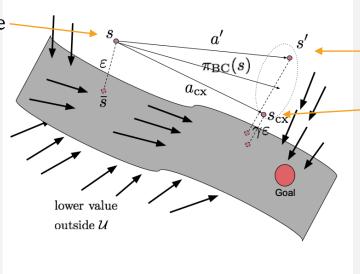
- 1. The resulting states s_1, \dots, s_{T_0} are all ε -close to the demonstrate states set \mathcal{U} .
- 2. If π_e improves V^{π_e} at every step, π also improves V^{π} .

the current state ε -close to u a random action u a possible correction u lower value outside u

Main Theorem. (informally stated) Under assumptions listed above, starting from $s_0 \in \mathcal{U}$ and executing a self-correctable policy π for $T_0 \leq T$ steps,

- 1. The resulting states s_1, \dots, s_{T_0} are all ε -close to the demonstrate states set \mathcal{U} .
- 2. If π_e improves V^{π_e} at every step, π also improves V^{π} .

the current state arepsilon-close to $\mathcal U$



a random action

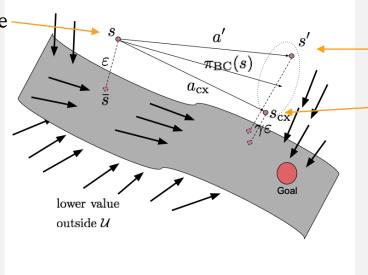
a possible correction

 $V(s_{cx}) \ge V(s') \Rightarrow a_{cx}$ is preferred than a' by π

Main Theorem. (informally stated) Under assumptions listed above, starting from $s_0 \in \mathcal{U}$ and executing a self-correctable policy π for $T_0 \leq T$ steps,

- 1. The resulting states s_1, \dots, s_{T_0} are all ε -close to the demonstrate states set \mathcal{U} .
- 2. If π_e improves V^{π_e} at every step, π also improves V^{π} .

the current state ε -close to $\mathcal U$



a random action

a possible correction

Challenge 2:

Behavioral Cloning (BC) has cascading errors.

Not true for a self-correctable policy!

$$V(s_{cx}) \ge V(s') \implies a_{cx}$$
 is preferred than a' by π

- Use negative sampling to learn a conservatively-extrapolated value function V.
 - For a demonstration state s, create a non-demonstration state $\tilde{s} = \text{perturb}(s)$
 - then minimize the following loss:

$$L(\phi) = \underbrace{\mathbb{E}_{(s,a,s')\sim\rho^{\pi_e}}\left[\left(r(s,a) + V_{\bar{\phi}}(s') - V_{\phi}(s)\right)^{2}\right]}_{\text{temporal difference loss}} + \mu \underbrace{\mathbb{E}_{s\sim\rho^{\pi_e},\tilde{s}\sim\text{perturb}(s)}\left[\left((V_{\bar{\phi}}(s) - \lambda \|s - \tilde{s}\|) - V_{\phi}(\tilde{s})\right)^{2}\right]}_{\text{negative sampling loss}}$$

- Use negative sampling to learn a conservatively-extrapolated value function V.
 - For a demonstration state s, create a non-demonstration state $\tilde{s} = \text{perturb}(s)$
 - then minimize the following loss:

$$L(\phi) = \underbrace{\mathbb{E}_{(s,a,s')\sim\rho^{\pi_e}}\left[\left(r(s,a) + V_{\bar{\phi}}(s') - V_{\phi}(s)\right)^{2}\right]}_{\text{temporal difference loss}} + \mu \underbrace{\mathbb{E}_{s\sim\rho^{\pi_e},\tilde{s}\sim\text{perturb}(s)}\left[\left((V_{\bar{\phi}}(s) - \lambda \|s - \tilde{s}\|) - V_{\phi}(\tilde{s})\right)^{2}\right]}_{\text{negative sampling loss}}$$

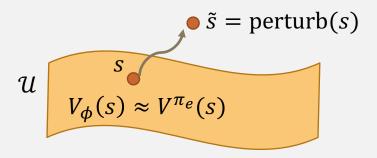
- Use negative sampling to learn a conservatively-extrapolated value function V.
 - For a demonstration state s, create a non-demonstration state $\tilde{s} = \text{perturb}(s)$
 - then minimize the following loss:

$$L(\phi) = \underbrace{\mathbb{E}_{(s,a,s')\sim\rho^{\pi_e}}\left[\left(r(s,a) + V_{\bar{\phi}}(s') - V_{\phi}(s)\right)^{2}\right]}_{\text{temporal difference loss}} + \mu \underbrace{\mathbb{E}_{s\sim\rho^{\pi_e},\tilde{s}\sim\text{perturb}(s)}\left[\left((V_{\bar{\phi}}(s) - \lambda \|s - \tilde{s}\|) - V_{\phi}(\tilde{s})\right)^{2}\right]}_{\text{negative sampling loss}}$$

 $\mathcal{U} \bigvee_{V_{\phi}(s) \approx V^{\pi_e}(s)}^{S_{\phi}}$

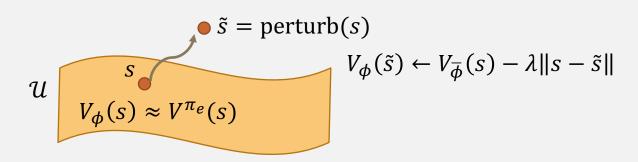
- Use negative sampling to learn a conservatively-extrapolated value function V.
 - For a demonstration state s, create a non-demonstration state $\tilde{s} = \text{perturb}(s)$
 - then minimize the following loss:

$$L(\phi) = \underbrace{\mathbb{E}_{(s,a,s')\sim\rho^{\pi_e}}\left[\left(r(s,a) + V_{\bar{\phi}}(s') - V_{\phi}(s)\right)^{2}\right]}_{\text{temporal difference loss}} + \mu \underbrace{\mathbb{E}_{s\sim\rho^{\pi_e},\tilde{s}\sim\text{perturb}(s)}\left[\left((V_{\bar{\phi}}(s) - \lambda \|s - \tilde{s}\|) - V_{\phi}(\tilde{s})\right)^{2}\right]}_{\text{negative sampling loss}}$$



- Use negative sampling to learn a conservatively-extrapolated value function V.
 - For a demonstration state s, create a non-demonstration state $\tilde{s} = \text{perturb}(s)$
 - then minimize the following loss:

$$L(\phi) = \underbrace{\mathbb{E}_{(s,a,s')\sim\rho^{\pi_e}}\left[\left(r(s,a) + V_{\bar{\phi}}(s') - V_{\phi}(s)\right)^{2}\right]}_{\text{temporal difference loss}} + \mu \underbrace{\mathbb{E}_{s\sim\rho^{\pi_e},\tilde{s}\sim\text{perturb}(s)}\left[\left((V_{\bar{\phi}}(s) - \lambda \|s - \tilde{s}\|) - V_{\phi}(\tilde{s})\right)^{2}\right]}_{\text{negative sampling loss}}$$



- Also learn the dynamics M_{θ} by minimizing prediction error.
- Use the induced policy from M_{θ} and V_{ϕ} , i.e., $\pi(s) = \arg \max_{a} V_{\phi}(M_{\theta}(s, a))$.
 - Use Behavior Cloning policy for better optimization.

```
\begin{array}{ll} \textbf{function Policy}(s) \\ \textbf{Option 1: } a = \pi_{\text{BC}}(s) \textbf{; Option 2: } a = 0 \\ \text{sample } k \text{ noises } \xi_1, \dots, \xi_k \text{ from Uniform}[-1, 1]^m \\ i^* = \operatorname{argmax}_i V_\phi(M_\theta(s, a + \alpha \xi_i)) \\ \textbf{return } a + \alpha \xi_{i^*} \end{array} \Rightarrow m \text{ is the dimension of action space} \\ \textbf{return } a + \alpha \xi_{i^*} \end{array}
```

Value Iteration with Environment Interaction

- Initialize the model and value function by VINS.
- The policy is not destroyed as we have a reasonable value function.

```
Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)Require: Initialize parameters \phi, \theta from the result of VINS (Algorithm 2)1: \mathcal{R} \leftarrow demonstration trajectories;2: for stage t = 1, \ldots do3: collect n_1 samples using the induced policy \pi in Algorithm 2 (with Option 2 in Line 10) and add them to \mathcal{R}4: for i = 1, \ldots, n_{\text{inner}} do5: sample mini-batch \mathcal{B} of N transitions (s, a, r, s') from \mathcal{R}6: update \phi to minimize \mathcal{L}_{td}(\phi; \mathcal{B})7: update target value network: \bar{\phi} \leftarrow \bar{\phi} + \tau(\phi - \bar{\phi})8: update \theta to minimize loss \mathcal{L}_{\text{model}}(\theta; \mathcal{B})
```

Value Iteration with Environment Interaction

- Initialize the model and value function by VINS.
- The policy is not destroyed as we have a reasonable value function.

Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)Require: Initialize parameters ϕ , θ from the result of VINS (Algorithm 2)1: $\mathcal{R} \leftarrow$ demonstration trajectories;2: for stage $t = 1, \ldots$ do3: collect n_1 samples using the induced policy π in Algorithm 2 (with Option 2 in Line 10) and add them to \mathcal{R} 4: for $i = 1, \ldots, n_{\text{inner}}$ do5: sample mini-batch \mathcal{B} of N transitions (s, a, r, s') from \mathcal{R} 6: update ϕ to minimize $\mathcal{L}_{td}(\phi; \mathcal{B})$ 7: update arget value network: $\bar{\phi} \leftarrow \bar{\phi} + \tau(\phi - \bar{\phi})$ 8: update θ to minimize loss $\mathcal{L}_{\text{model}}(\theta; \mathcal{B})$

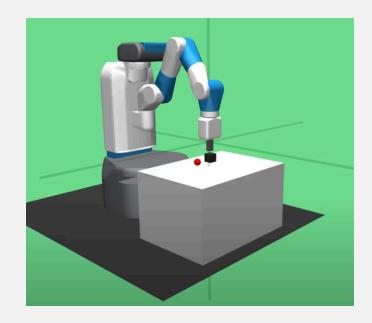
Challenge 3:

Make use of good initialization.

VINS+RL can do it!

Environments for Experiments

- Environments from OpenAI Gym: FetchReachv0, FetchPickAndPlace-v0, FetchPush-v0.
- Observation: data from sensors
 - e.g., arm position/velocity, gripper position.
- Reward: of form $-\mathbb{I}[\||\log \text{goal}\|| \ge \varepsilon]$.



Experimental Results

	VINS (ours)	BC	
Reach 10	$99.3 \pm 0.1\%$	$98.6\pm0.1\%$	
Pick 100	$\textbf{75.7} \pm \textbf{1.0}\%$	$66.8\pm1.1\%$	
Pick 200	$84.0 \pm 0.5\%$	$82.0\pm0.8\%$	
Push 100	$44.0 \pm 1.5\%$	$37.3\pm1.1\%$	
Push 200	$\textbf{55.2} \pm \textbf{0.7}\%$	$51.3\pm0.6\%$	

Without environment interaction: <u>VINS achieves higher success rate</u> than BC given the same demonstrations.

Experimental Results

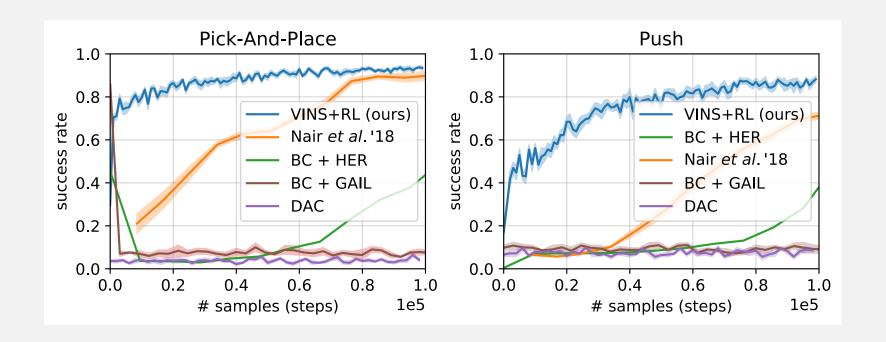


Figure: With environment interaction: <u>VINS outperforms</u> Nair *et al.* '18, HER, DAC, GAIL in terms of sample efficiency.

Ablation Study

- Three components in VINS: dynamics model, value function, optimization
 - Dynamics Model: learned model vs oracle model
 - Value Function: with negative sampling vs without negative sampling
 - Optimization: with BC vs without BC

Ablation Study

- Three components in VINS: dynamics model, value function, optimization
 - Dynamics Model: learned model vs oracle model
 - Value Function: with negative sampling vs without negative sampling
 - Optimization: with BC vs without BC

	Pick 100	Pick 200	Push 100	Push 200
BC	$66.8 \pm 1.1\%$	$82.0\pm0.8\%$	$37.3\pm1.1\%$	$51.3 \pm 0.6\%$
VINS	$75.7 \pm 1.0\%$	$84.0 \pm 0.5\%$	$44.0 \pm 0.8\%$	$55.2 \pm 0.7\%$
VINS w/o BC	$28.5 \pm 1.1\%$	$43.6\pm1.2\%$	$14.3\pm0.5\%$	$24.9 \pm 1.3\%$
VINS w/ oracle w/o BC	$51.4\pm1.4\%$	$62.3\pm1.1\%$	$40.7\pm1.4\%$	$42.9 \pm 1.3\%$
VINS w/ oracle	$76.3\pm1.4\%$	$87.0 \pm 0.7\%$	$48.7\pm1.2\%$	$63.8 \pm 1.3\%$
VINS w/o NS	$48.5\pm2.1\%$	$71.6\pm0.9\%$	$29.3\pm1.2\%$	$38.7 \pm 1.5\%$

Conclusion

- A conservatively-extrapolated value function leads to self-correction.
- VINS can be an alternative to BC and can also be combined with BC.
- The learned value function from demonstration helps initialization for faster convergence.