Learning Self-Correctable Policies and Value

Functions from Demonstrations with
Negative Sampling

Yuping Luo!, Huazhe (Harry) Xu?, Tengyu Ma3

Princeton University, 2UC Berkeley, *Stanford University

Reinforcement Learning (RL)

Environment

observation
reward

action

Agent

Chess Shogi Go
SN ey <
PSS SU g N X
$° K = :
:4 e ‘
AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
W:29.0% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W:68.9% L:31.1%
O T I
(| I
W:2.0% D:97.2% L:0.8% W:98.2% D:0.8% L:1.8% W:53.7% L:46.3%
Az wins [l AZdraws AZ loses Az white) AZblack @
From DeepMind

FINGER PIVOTING

Robotics

From OpenAl

https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/
https://openai.com/blog/learning-dexterity/

Imitation Learning (IL)

Given demonstrations from experts.
Learn a policy from demonstrations from implicit reward function.

Two settings: w/ or w/o environment interactions

Expert Demonstrations State/Action Pairs Learning
—
.............. -\
(i~ E
LT e
——

From Yisong Yue @

https://www.slideshare.net/yisongyue/imitation-learning-tutorial

Median human-normalized score

200%

100%

Why Imitation Learning?

Sample efficiency

DQN
DDQN
Prioritized DDQN
Dueling DDQN
A3C

Distributional DQN
Noisy DQN
Rainbow

|
44 100 200
Millions of frames

From Hessal et. al

https://arxiv.org/abs/1710.02298

Median human-normalized score

200%

100%

Why Imitation Learnin

?

Sample efficiency

DQN
DDQN
Prioritized DDQN
Dueling DDQN
A3C

Distributional DQN
Noisy DQN
Rainbow

|
44 100 200
Millions of frames

From Hessal et. al

Use existing good demonstrations

youtube montezuma revenge atari !, Q

Q Al Q shopping) News [Videos [J Images i More Settings Tools
About 10,600 results (0.23 seconds)

MONTEZUMA'S REVENGE (ATARI 800XL) - YouTube
https://www.youtube.com » watch v

TRl Zeus presents Montezuma's Revenge (aka Preliminary Monty, aka Panama
Joe) (un-emulated) for the Atari ...

Sep 3, 2011 - Uploaded by Zeusdaz - The Unemulated Retro Game Channel

Montezuma's Revenge (Atari XL/XE) - YouTube
https://www.youtube.com > watch

This is a playthrough of the first level of Montezuma's Revenge (also known
as "Preliminary Monty"), a ...

Dec 9,2013 - Uploaded by J.C's Channel

»7:04

Atari 800 XL - Montezuma's Revenge - YouTube
https://www.youtube.com > watch v

Here's Montezuma's Revenge, great great videogame from Utopia Software
Inc. made in 1983 by Robert ..
Apr 2, 2007 - Uploaded by GamesEmotions

Montezuma's Revenge - Atari 2600 - YouTube
https://www.youtube.com » watch v

Sl Jogando um pouquinho. Playing a little bit. Game. Montezuma's Revenge;
1983. Category. Gaming ...
Apr 15,2011 - Uploaded by Nelson Akira

From Google

https://arxiv.org/abs/1710.02298
https://www.google.com/search%3Fbiw=2304&bih=1162&tbm=vid&ei=33yiXrWmOOmwytMPto-JqAE&q=youtube+montezuma+revenge+atari&oq=youtube+montezuma+revenge+atari&gs_l=psy-ab.3..33i299k1l2.65298.65829.0.66302.6.6.0.0.0.0.118.531.4j2.6.0....0...1c.1j4.64.psy-ab..0.6.528...33i160k1.0.pN3d7LRUyKc

Median human-normalized score

200%

100%

Why Imitation Learning?

Sample efficiency

DQN
DDQN
Prioritized DDQN
Dueling DDQN
A3C

Distributional DQN
Noisy DQN
Rainbow

|
100
Millions of frames

200

From Hessal et. al

Use existing good demonstrations

Q

youtube montezuma revenge atari !,

Q Al Q shopping) News [Videos [J Images i More Settings Tools

About 10,600 results (0.23 seconds)

. (b, 57 P s
MONTEZUMA'S REVENGE (ATARI 800XL) - YouTube CARR

https://www.youtube.com » watch v

otherwise

e Zeus presents Montezuma's Revenge (aka Preliminary Monty, aka Panama
Joe) (un-emulated) for the Atari ...
Sep 3, 2011 - Uploaded by Zeusdaz - The Unemulated Retro Game Channel

D, 5P, 5P s

otherwise

https://www.youtube.com > watch T(b(l) P gBl 0.25
2 0SS

This is a playthrough of the first level of Montezuma's Revenge (also known 0.125 if — (slack(bz
I W " -
as "Preliminary Monty"), a ... ‘ 0 otherwise
»7:08 Dec 9,2013 - Uploaded by J.C's Channel
1
< 0 B1 P
Atari 800 XL - Montezuma's Revenge - YouTube (b0, 57, 5P s 0.25 + 0.25752(s"1, ")
S

0.125
0+ 0.125r5; (s7

https://www.youtube.com > watch v

Montezuma's Revenge - Atari 2600 - YouTube

https JIWWW. youtube com > watch v

Jogando um pouquinho. Playing a little bit. Game. Montezuma's Revenge;
1983. Category. Gaming ...

Apr 15,2011 - Uploaded by Nelson Akira

Here's Montezuma's Revenge, great great videogame from Utopia Software
Inc. made in 1983 by Robert ..
Apr 2, 2007 - Uploaded by GamesEmotions

Montezuma's Revenge (Atari XL/XE) - YouTube {

From Google

if stack(b, sP 5B sB2)

.P

Hard to design (good) reward function

if stack(b{"), 57, sP1, s52)

0
1
0.25 if —stack(b{",
0
1

if stack(b{", 57, 581, s52)

3)

sB1, s82) A grasp(bL”, sP, sB1, s52) 4)

if ﬁstauk(b“) P Bl s52) A grasp(bS?, 57, sB1, s52) s
st 31, B2) v grasp(bl), sP, s81, s82)) A reach(bl), 57, sB1, s52)

if slack(bgl),s”’.s
if —\slack(b(:l),sp‘ sBL sB2) A grasp(bs.”‘sp,sm‘sm)

Bl‘ SB?)

if —(stack(b", 57, sP1, s82) v grasp(bl", s, sBL, s52)) A reach(bS” 57,

otherwise

(6)

SBI,

882)

From Popov et. al

https://arxiv.org/abs/1710.02298
https://www.google.com/search%3Fbiw=2304&bih=1162&tbm=vid&ei=33yiXrWmOOmwytMPto-JqAE&q=youtube+montezuma+revenge+atari&oq=youtube+montezuma+revenge+atari&gs_l=psy-ab.3..33i299k1l2.65298.65829.0.66302.6.6.0.0.0.0.118.531.4j2.6.0....0...1c.1j4.64.psy-ab..0.6.528...33i160k1.0.pN3d7LRUyKc
https://arxiv.org/abs/1704.03073

Basic Notations

For simplicity, we assume a deterministic MDP with:

State space S = R%, action space A = R¥

Dynamics model M*: SXA — §

Reward function7: S XA = R

Discount factor: y € (0, 1]
(Value function) V™ (s) = E[X;—0 ¥'ri|sg = s|is the value at state s
Expert policy 1,

find a policy m = argmax Eg.p_ [V™(s)]
T

Main Concern in Imitation Learning

Ditferent state distributions in demonstration and testing.

Learned Policy Fxpert trajectory Grid world. Reward = -1 at each step
—_ 5/ and stops when reaching goal.
No data on Color: learned value function.

Black path: demonstration.
Yellow: Starting point.
Green: Goal.

how to recover

Arrows: Policy.

From Emma Brunskill

The learned value function via standard Bellman equation.

https://web.stanford.edu/class/cs234/slides/lecture7.pdf

Main Concern in Imitation Learning

Ditferent state distributions in demonstration and testing.

Wrong extrapolation of I/

Expert trajectory

Learned Policy
—
>§ i,
No data on /

....

how torecover i} (l

From Emma Brunskill

Grid world. Reward = -1 at each step
and stops when reaching goal.

Color: learned value function.
Black path: demonstration.
Yellow: Starting point.

Green: Goal.

Arrows: Policy.

The learned value function via standard Bellman equation.

https://web.stanford.edu/class/cs234/slides/lecture7.pdf

Challenges

Challenge 1. The value function V™ and Q™ are not unique outside of
demonstration.

Challenge 2. Behavioral Cloning (BC) has cascading errors.

Challenge 3. Many RL algorithms use random initialized value function, which
destroys a good initialized policy quickly.

Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.

L2 T S S

Color: learned value function.
Black path: demonstration.
Yellow: Starting point.

Green: Goal.

Arrows: Policy.

> < — — «— «— «— |— s

HEEEEN

The Conservatively-Extrapolated Value Function @

Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.

Algorithm

L2 T S S

Color: learned value function.
Black path: demonstration.
Yellow: Starting point.

Green: Goal.

Arrows: Policy.

HEEEEN

The Conservatively-Extrapolated Value Function @

Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.

Algorithm
Color: learned value function. Learn a conservatively-extrapolated value function V
Black path: demonstration.
Yellow: Starting point.
Green: Goal.

Arrows: Policy.

— — — N — — «— «— |—

BT T

HEEEEN

The Conservatively-Extrapolated Value Function @

Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.

Algorithm
Color: learned value function. , Learn a conservatively-extrapolated value function V
Black path: demonstration. R . ﬂ

Yellow: Starting point. o 7

Green: Goal.
Arrows: Policy.

Learn the dynamics model M

HEEEEN

The Conservatively-Extrapolated Value Function @

Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.

Algorithm

Learn a conservatively-extrapolated value function V

!

Learn the dynamics model M

!

n(s) = arg max V(M (s, a))

Color: learned value function.

—> —3> —3 —> — «— «— «— «— «— <« =

Black path: demonstration.
: Starting point.

Green: Goal.

Arrows: Policy.

HEEEEN

The Conservatively-Extrapolated Value Function @

Problem Setup

For simplicity, y = 1.
Initial state distribution D has a low-dimensional bounded support

‘U = the set of states which the expert policy T, can visit w.p. > 0

Assumption. U is a low-dimensional manifold.

Theoretical Motivation

BC can be correct in ‘U but might not be correct outside of it.

Theoretical Motivation

BC can be correct in ‘U but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model?
Assumption 1. (informally stated) BC policy and learned dynamics model is locally (around U)
correct.

Theoretical Motivation

BC can be correct in ‘U but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model?
Assumption 1. (informally stated) BC policy and learned dynamics model is locally (around U)
correct.

Question 2. Does such a correction exist?
Assumption 2. (informally stated) There exists an action which makes a correction so that the

resulting state is £-close to U.

Theoretical Motivation

BC can be correct in ‘U but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model?

Assumption 1. (informally stated) BC policy and learned dynamics model is locally (around U)
correct.

Question 2. Does such a correction exist?

Assumption 2. (informally stated) There exists an action which makes a correction so that the
resulting state is £-close to U.

Question 3. Can the dynamics model/policy/value function change too fast?

Assumption 3. (informally stated) BC policy, dynamics model, value functions and projection
function to U are Lipschitz.

Theoretical Motivation

Definition. A I/ satisfies
Vi(s) =V7"(s) + dy, if sel
Vis)=VTe(Ily(s)) — Alls — Hy(s)|| £ v if s U

The following induced policy is
m(s) = arg max V(M(s,a))

a:lla=moe (5)]| <¢

Theoretical Motivation

Definition. A I/ satisfies
Vi(s) =V7"(s) + dy, if seld
Vis)=VTe(Ily(s)) — Alls — Hy(s)|| £ v if s U

The following induced policy is
m(s) = arg max V(M(s,a))

a:lla=moe (5)]| <¢

Challenge 1:
The value function V™e (and Q™¢) are not unique outside of U.

Not a problem for a conservatively-extrapolated value function!

Theoretical Motivation

Main Theorem. (informally stated) Under assumptions listed above, starting from sy € U and
executing a self-correctable policy 7 for Ty < T steps,

The resulting states Sy, ..., St are all £-close to the demonstrate states set U.

If T, improves Ve at every step, also improves V™.

Theoretical Motivation

Main Theorem. (informally stated) Under assumptions listed above, starting from sy € U and
executing a self-correctable policy 7 for Ty < T steps,

The resulting states Sy, ..., St are all £-close to the demonstrate states set U.

If T, improves Ve at every step, also improves V™.

the current state [

-closeto U a random action

a possible correction

lower value
outside U

Theoretical Motivation

Main Theorem. (informally stated) Under assumptions listed above, starting from sy € U and
executing a self-correctable policy 7 for Ty < T steps,

The resulting states Sy, ..., St are all £-close to the demonstrate states set U.

If T, improves Ve at every step, also improves V™.

the current state [

-closeto U a random action

a possible correction

V(sex) = V(s'") = a,,ispreferred thana’ by
lower value
outside U

Theoretical Motivation

Main Theorem. (informally stated) Under assumptions listed above, starting from sy € U and
executing a self-correctable policy 1 for Ty < T steps,

The resulting states Sy, ..., St are all £-close to the demonstrate states set U.

If T, improves Ve at every step, also improves V™.

the current state [

g-closetoU Challenge 2:

Behavioral Cloning (BC) has cascading errors.

a random action

a possible correction

Not true for a self-correctable policy!

V(sex) = V(s'") = a,,ispreferred thana’ by
lower value
outside U

Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) —)‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss

Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) —)‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss

Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) —)‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss

Vp(s) = V7e(s)

Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) —)‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss

@ § = perturb(s)
S

Vp(s) = V7e(s)

U

Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) —)‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss

@ § = perturb(s)

4 s Ve (3) « Vg (s) — Alls — 3|
Vo (s) = VTe(s)

Value Iteration with Negative Sampling (VINS)

Also learn the dynamics Mg by minimizing prediction error.
Use the induced policy from My and Vg, i.e., (s) = arg max Vg (Mg (s, a)).
a

Use Behavior Cloning policy for better optimization.

function POLICY(s)
Option 1: a = mpc(s); Option 2: a = 0
sample k noises &1, . .., &, from Uniform[—1,1]™ > m is the dimension of action space
i* = argmax, Vy(Mp(s,a + a&;)) >« > 0 is a hyper-parameter
return a + o;~

Value Iteration with Environment Interaction

Initialize the model and value function by VINS.

The policy is not destroyed as we have a reasonable value function.

Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)

Require: Initialize parameters ¢, 6 from the result of VINS (Algorithm 2)
1: R < demonstration trajectories; ‘
2: forstaget =1,... do
3: collect ny samples using the induced policy 7 in Algorithm 2|(with Option 2 in Line and
add them to R

4 for:=1,...,Njpner do

5: sample mini-batch B of N transitions (s, a,r,s’) from R
6: update ¢ to minimize L.4(¢; B) ~

7: update target value network: ¢ < ¢ + 7(¢ — @)

8 update 6 to minimize 10ss Lode1(60; B)

Value Iteration with Environment Interaction

Initialize the model and value function by VINS.

The policy is not destroyed as we have a reasonable value function.

Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)
Require: Initialize parameters ¢, 6 from the result of VINS (Algorithm 2)

1: R < demonstration trajectories;
2: for staget =1,... do Challenge 3:
3: collect ny samples using the induced policy 7 in Algorithm 2|(with Option 2 in Line|10) and Make use of good initialization.
add them to R
fori=1,...,Njper do
sample mini-batch B of N transitions (s, a,r, s’) from R VINS+RL can do it!

update target value network: ¢ < ¢ + 7(¢ — ¢)

4
5:

6: update ¢ to minimize L4(¢; B)

7.

8 update 6 to minimize 10ss Lode1(60; B)

Environments for Experiments

Environments from OpenAl Gym: FetchReach-
vO, FetchPickAndPlace-vO, FetchPush-ve.

Observation: data from sensors
e.g., arm position/velocity, gripper position.

Reward: of form —I[||loc — goal|| = ¢].

Experimental Results

VINS (ours) BC
Reach 10 99.3 £0.1% 98.6 =0.1%
Pick 100 75.7+1.0% 66.8+1.1%
Pick200 84.0+0.5% 82.0+0.8%
Push 100 44.0+1.5% 37.3+1.1%
Push200 55.24+0.7% 51.3+0.6%

Without environment interaction: VINS achieves higher success rate
than BC given the same demonstrations.

Experimental Results

Pick-And-Place Push
1.0 1.0
0.8 0.8 - ‘AW
9 VINS+RL (ours) 9 VINS+RL (ours)
C 0.6 Nair et al.'18 © 0.6 —— BC + HER
§ —— BC + HER ﬁ Nair et al.'18
Y 0.4 —— BC + GAIL 1 Y 0.4 —— BC + GAIL y
7 —— DAC 7 —— DAC
0.2 0.2 1
0.0 T T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
samples (steps) le5 # samples (steps) le5

Figure: With environment interaction: VINS outperforms
Nair et al. ‘18, HER, DAC, GAIL in terms of sample efficiency.

Ablation Study

Three components in VINS: dynamics model, value function, optimization
Dynamics Model: learned model vs
Value Function: vs without negative sampling

Optimization: vs without BC

Ablation Study

Three components in VINS: dynamics model, value function, optimization

Dynamics Model: learned model vs

Value Function: vs without negative sampling
Optimization: vs without BC
Pick 100 Pick 200 Push 100 Push 200
BC 66.8+1.1% 82.0+0.8% 37.3+1.1% 51.3+0.6%
VINS 75.7+£1.0% 84.0+05% 44.0+08% 55.2+0.7%
VINS woBC 285+ 1.1% 43.6+1.2% 14.3+0.5% 24.9+1.3%
VINS/%‘E&C]G 51.4+1.4% 623+1.1% 40.7+1.4% 42.9+1.3%
VINS w/oracle 76.3+1.4% 87.0+0.7% 48.7+1.2% 63.8+1.3%
VINS w/oNS 485+2.1% 71.6+0.9% 29.3+1.2% 38.7+1.5%

Conclusion

A leads to self-correction.
VINS can be an and can also be

The learned value function from demonstration helps initialization for

