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FINGER PIVOTING

Robotics

From OpenAl


https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/
https://openai.com/blog/learning-dexterity/

Imitation Learning (IL)

Given demonstrations from experts.
Learn a policy from demonstrations from implicit reward function.

Two settings: w/ or w/o environment interactions
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From Yisong Yue @



https://www.slideshare.net/yisongyue/imitation-learning-tutorial
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https://arxiv.org/abs/1710.02298
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Use existing good demonstrations

youtube montezuma revenge atari !, Q

Q Al Q shopping ) News [ Videos [J Images i More Settings  Tools
About 10,600 results (0.23 seconds)

MONTEZUMA'S REVENGE (ATARI 800XL) - YouTube
https://www.youtube.com » watch v

TRl Zeus presents Montezuma's Revenge (aka Preliminary Monty, aka Panama
Joe) (un-emulated) for the Atari ...

Sep 3, 2011 - Uploaded by Zeusdaz - The Unemulated Retro Game Channel

Montezuma's Revenge (Atari XL/XE) - YouTube
https://www.youtube.com > watch

This is a playthrough of the first level of Montezuma's Revenge (also known
as "Preliminary Monty"), a ...

Dec 9,2013 - Uploaded by J.C's Channel

»7:04

Atari 800 XL - Montezuma's Revenge - YouTube
https://www.youtube.com > watch v

Here's Montezuma's Revenge, great great videogame from Utopia Software
Inc. made in 1983 by Robert ..
Apr 2, 2007 - Uploaded by GamesEmotions

Montezuma's Revenge - Atari 2600 - YouTube
https://www.youtube.com » watch v

Sl Jogando um pouquinho. Playing a little bit. Game. Montezuma's Revenge;
1983. Category. Gaming ...
Apr 15,2011 - Uploaded by Nelson Akira

From Google



https://arxiv.org/abs/1710.02298
https://www.google.com/search%3Fbiw=2304&bih=1162&tbm=vid&ei=33yiXrWmOOmwytMPto-JqAE&q=youtube+montezuma+revenge+atari&oq=youtube+montezuma+revenge+atari&gs_l=psy-ab.3..33i299k1l2.65298.65829.0.66302.6.6.0.0.0.0.118.531.4j2.6.0....0...1c.1j4.64.psy-ab..0.6.528...33i160k1.0.pN3d7LRUyKc
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Use existing good demonstrations
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https://arxiv.org/abs/1710.02298
https://www.google.com/search%3Fbiw=2304&bih=1162&tbm=vid&ei=33yiXrWmOOmwytMPto-JqAE&q=youtube+montezuma+revenge+atari&oq=youtube+montezuma+revenge+atari&gs_l=psy-ab.3..33i299k1l2.65298.65829.0.66302.6.6.0.0.0.0.118.531.4j2.6.0....0...1c.1j4.64.psy-ab..0.6.528...33i160k1.0.pN3d7LRUyKc
https://arxiv.org/abs/1704.03073

Basic Notations

For simplicity, we assume a deterministic MDP with:

State space S = R%, action space A = R¥

Dynamics model M*: SXA — §

Reward function7: S XA = R

Discount factor: y € (0, 1]
(Value function) V™ (s) = E[X;—0 ¥'ri|sg = s|is the value at state s
Expert policy 1,

find a policy m = argmax Eg.p_ [V™(s)]
T




Main Concern in Imitation Learning

Ditferent state distributions in demonstration and testing.

Learned Policy Fxpert trajectory Grid world. Reward = -1 at each step
—_ 5/ and stops when reaching goal.
No data on Color: learned value function.

Black path: demonstration.
Yellow: Starting point.
Green: Goal.

how to recover

Arrows: Policy.

From Emma Brunskill

The learned value function via standard Bellman equation.


https://web.stanford.edu/class/cs234/slides/lecture7.pdf

Main Concern in Imitation Learning

Ditferent state distributions in demonstration and testing.
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Grid world. Reward = -1 at each step
and stops when reaching goal.

Color: learned value function.
Black path: demonstration.
Yellow: Starting point.

Green: Goal.

Arrows: Policy.

The learned value function via standard Bellman equation.


https://web.stanford.edu/class/cs234/slides/lecture7.pdf

Challenges

Challenge 1. The value function V™ and Q™ are not unique outside of
demonstration.

Challenge 2. Behavioral Cloning (BC) has cascading errors.

Challenge 3. Many RL algorithms use random initialized value function, which
destroys a good initialized policy quickly.




Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.
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Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.
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Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.
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Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.
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Conservatively-Extrapolated Value Function

Non-demonstration states should have lower value than demonstration states.

Penalize non-demonstration states.

Algorithm

Learn a conservatively-extrapolated value function V

!

Learn the dynamics model M

!

n(s) = arg max V(M (s, a))
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Problem Setup

For simplicity, y = 1.
Initial state distribution D has a low-dimensional bounded support

‘U = the set of states which the expert policy T, can visit w.p. > 0

Assumption. U is a low-dimensional manifold.




Theoretical Motivation

BC can be correct in ‘U but might not be correct outside of it.
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Theoretical Motivation

BC can be correct in ‘U but might not be correct outside of it.

Question 1. How correct are BC policy and learned dynamics model?

Assumption 1. (informally stated) BC policy and learned dynamics model is locally (around U)
correct.

Question 2. Does such a correction exist?

Assumption 2. (informally stated) There exists an action which makes a correction so that the
resulting state is £-close to U.

Question 3. Can the dynamics model/policy/value function change too fast?

Assumption 3. (informally stated) BC policy, dynamics model, value functions and projection
function to U are Lipschitz.



Theoretical Motivation

Definition. A I/ satisfies
Vi(s) =V7"(s) + dy, if sel
Vis)=VTe(Ily(s)) — Alls — Hy(s)|| £ v if s U

The following induced policy is
m(s) = arg max V(M(s,a))

a:lla=moe (5) ]| <¢




Theoretical Motivation

Definition. A I/ satisfies
Vi(s) =V7"(s) + dy, if seld
Vis)=VTe(Ily(s)) — Alls — Hy(s)|| £ v if s U

The following induced policy is
m(s) = arg max V(M(s,a))

a:lla=moe (5) ]| <¢

Challenge 1:
The value function V™e (and Q™¢) are not unique outside of U.

Not a problem for a conservatively-extrapolated value function!




Theoretical Motivation

Main Theorem. (informally stated) Under assumptions listed above, starting from sy € U and
executing a self-correctable policy 7 for Ty < T steps,

The resulting states Sy, ..., St are all £-close to the demonstrate states set U.

If T, improves Ve at every step,  also improves V™.
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Theoretical Motivation

Main Theorem. (informally stated) Under assumptions listed above, starting from sy € U and
executing a self-correctable policy 1 for Ty < T steps,

The resulting states Sy, ..., St are all £-close to the demonstrate states set U.

If T, improves Ve at every step,  also improves V™.

the current state [

g-closetoU Challenge 2:

Behavioral Cloning (BC) has cascading errors.

a random action

a possible correction

Not true for a self-correctable policy!

V(sex) = V(s'") = a,,ispreferred thana’ by
lower value
outside U



Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) — )‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss
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Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)
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@ § = perturb(s)
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Vp(s) = V7e(s)
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Value Iteration with Negative Sampling (VINS)

Use tolearn a V.
For a demonstration state S, create a non-demonstration state § = perturb(s)

then minimize the following loss:

L(¢) — IE(s,a,s’)rvp7T€ [(T(So CL) -+ VQB(S/) _ V¢(S))2] +M]Es~p”e,§~perturb(s) [((VQZ(S) — )‘HS T 5“) o V¢(§))2]

TV TV

temporal difference loss negative sampling loss

@ § = perturb(s)

4 s Ve (3) « Vg (s) — Alls — 3|
Vo (s) = VTe(s)




Value Iteration with Negative Sampling (VINS)

Also learn the dynamics Mg by minimizing prediction error.
Use the induced policy from My and Vg, i.e., (s) = arg max Vg (Mg (s, a)).
a

Use Behavior Cloning policy for better optimization.

function POLICY(s)
Option 1: a = mpc(s); Option 2: a = 0
sample k noises &1, . .., &, from Uniform[—1,1]™ > m is the dimension of action space
i* = argmax, Vy(Mp(s,a + a&;)) >« > 0 is a hyper-parameter
return a + o;~




Value Iteration with Environment Interaction

Initialize the model and value function by VINS.

The policy is not destroyed as we have a reasonable value function.

Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)

Require: Initialize parameters ¢, 6 from the result of VINS (Algorithm 2)
1: R < demonstration trajectories; ‘
2: forstaget =1,... do
3: collect ny samples using the induced policy 7 in Algorithm 2|(with Option 2 in Line and
add them to R

4 for:=1,...,Njpner do

5: sample mini-batch B of N transitions (s, a,r,s’) from R
6: update ¢ to minimize L.4(¢; B) ~

7: update target value network: ¢ < ¢ + 7(¢ — @)

8 update 6 to minimize 10ss Lode1(60; B)




Value Iteration with Environment Interaction

Initialize the model and value function by VINS.

The policy is not destroyed as we have a reasonable value function.

Algorithm 3 Value Iteration with Environment Interactions Initialized by VINS (VINS+RL)
Require: Initialize parameters ¢, 6 from the result of VINS (Algorithm 2)

1: R < demonstration trajectories;
2: for staget =1,... do Challenge 3:
3: collect ny samples using the induced policy 7 in Algorithm 2|(with Option 2 in Line|10) and Make use of good initialization.
add them to R
fori=1,...,Njper do
sample mini-batch B of N transitions (s, a,r, s’) from R VINS+RL can do it!

update target value network: ¢ < ¢ + 7(¢ — ¢)

4
5:

6: update ¢ to minimize L4(¢; B)

7.

8 update 6 to minimize 10ss Lode1(60; B)




Environments for Experiments

Environments from OpenAl Gym: FetchReach-
vO, FetchPickAndPlace-vO, FetchPush-ve.

Observation: data from sensors
e.g., arm position/velocity, gripper position.

Reward: of form —I[||loc — goal|| = ¢].




Experimental Results

VINS (ours) BC
Reach 10 99.3 £0.1% 98.6 =0.1%
Pick 100 75.7+1.0% 66.8+1.1%
Pick200 84.0+0.5% 82.0+0.8%
Push 100 44.0+1.5% 37.3+1.1%
Push200 55.24+0.7% 51.3+0.6%

Without environment interaction: VINS achieves higher success rate
than BC given the same demonstrations.




Experimental Results

Pick-And-Place Push
1.0 1.0
0.8 0.8 - ‘AW
9 VINS+RL (ours) 9 VINS+RL (ours)
C 0.6 Nair et al.'18 © 0.6 —— BC + HER
§ —— BC + HER ﬁ Nair et al.'18
Y 0.4 —— BC + GAIL 1 Y 0.4 —— BC + GAIL y
7 —— DAC 7 —— DAC
0.2 0.2 1
0.0 T T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
# samples (steps) le5 # samples (steps) le5

Figure: With environment interaction: VINS outperforms
Nair et al. ‘18, HER, DAC, GAIL in terms of sample efficiency.




Ablation Study

Three components in VINS: dynamics model, value function, optimization
Dynamics Model: learned model vs
Value Function: vs without negative sampling

Optimization: vs without BC




Ablation Study

Three components in VINS: dynamics model, value function, optimization

Dynamics Model: learned model vs

Value Function: vs without negative sampling
Optimization: vs without BC
Pick 100 Pick 200 Push 100 Push 200
BC 66.8+1.1% 82.0+0.8% 37.3+1.1% 51.3+0.6%
VINS 75.7+£1.0% 84.0+05% 44.0+08% 55.2+0.7%
VINS woBC 285+ 1.1% 43.6+1.2% 14.3+0.5% 24.9+1.3%
VINS/%‘E&C]G 51.4+1.4% 623+1.1% 40.7+1.4% 42.9+1.3%
VINS w/oracle 76.3+1.4% 87.0+0.7% 48.7+1.2% 63.8+1.3%
VINS w/oNS  485+2.1% 71.6+0.9% 29.3+1.2% 38.7+1.5%




Conclusion

A leads to self-correction.
VINS can be an and can also be

The learned value function from demonstration helps initialization for




